The Hausdorff dimension of directional edge escaping points set

نویسندگان

چکیده

In this paper, we define the directional edge escaping points set of function iteration under a given plane partition and then prove that upper bound Hausdorff dimension \(S(z)=a e^{z}+b e^{-z}\), where \(a, b\in \mathbb{C}\) \(|a|^{2}+|b|^{2}\neq 0\), is no more than 1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Historic set carries full hausdorff dimension

‎We prove that the historic set for ratio‎ ‎of Birkhoff average is either empty or full of Hausdorff dimension in a class of one dimensional‎ ‎non-uniformly hyperbolic dynamical systems.

متن کامل

On the Hausdorff Dimension of the Escaping Set of Certain Meromorphic Functions

Let f be a transcendental meromorphic function of finite order ρ for which the set of finite singularities of f is bounded. Suppose that ∞ is not an asymptotic value and that there exists M ∈ N such that the multiplicity of all poles, except possibly finitely many, is at most M . For R > 0 let IR(f) be the set of all z ∈ C for which lim infn→∞ |f(z)| ≥ R as n → ∞. Here f denotes the n-th iterat...

متن کامل

Functions of Genus Zero for Which the Fast Escaping Set Has Hausdorff Dimension Two

We study a family of transcendental entire functions of genus zero, for which all of the zeros lie within a closed sector strictly smaller than a half-plane. In general these functions lie outside the Eremenko-Lyubich class. We show that for functions in this family the fast escaping set has Hausdorff dimension equal to two.

متن کامل

Hausdorff Dimension of Radial and Escaping Points for Transcendental Meromorphic Functions

We consider a class of transcendental meromorphic functions f : C → C with infinitely many poles. Under some regularity assumption on the location of poles and the behavior of the function near the poles, we provide explicite lower bounds for the hyperbolic dimension (Hausdorff dimension of radial points) of the Julia set and upper bounds for the Hausdorff dimension of the set of escaping point...

متن کامل

The Hausdorff Dimension of the Set of Dissipative Points for a Cantor–Like Model Set for Singly Cusped Parabolic Dynamics

In this paper we introduce and study a certain intricate Cantor-like set C contained in unit interval. Our main result is to show that the set C itself, as well as the set of dissipative points within C, both have Hausdorff dimension equal to 1. The proof uses the transience of a certain non-symmetric Cauchy-type random walk.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Glasnik Matematicki

سال: 2022

ISSN: ['1846-7989', '0017-095X']

DOI: https://doi.org/10.3336/gm.57.2.05